Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.
نویسندگان
چکیده
Dynamics in microclimate and physiological plant traits were studied for Pubescent oak and Scots pine in a dry inner-alpine valley in Switzerland, at a 10 min resolution for three consecutive years (2001-2003). As expected, stomata tended to close with increasing drought in air and soil. However, stomatal aperture in oak was smaller than in pine under relatively wet conditions, but larger under dry conditions. To explore underlying mechanisms, a model was applied that (i) quantifies water relations within trees from physical principles (mechanistic part) and (ii) assumes that signals from light, stomatal aperture, crown water potential, and tree water deficit in storage pools control stomata (systemic part). The stomata of pine showed a more sensitive response to increasing drought because both factors, the slowly changing tree water deficit and the rapidly changing crown water potential, closed the stomata. By contrast, the stomata of oak became less drought-sensitive as the closing signal of crown water potential was opposed by the opening signal of tree water deficit. Moreover, parameter optimization suggests that oak withdrew more water from the storage pools and reduced leaf water potentials to lower levels, without risking serious damage by cavitation. The new model thus suggests how the hydraulic water flow and storage system determines the responses in stomatal aperture and transpiration to drought at time scales ranging from hours to multiple years, and why pine and oak might differ in such responses. These differences explain why oaks are more efficient competitors during drought periods, although this was not the case in the extremely dry year 2003, which provoked massive leaf loss and, from July onwards, physiological activity almost ceased.
منابع مشابه
Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i.
The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Met...
متن کاملDrought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.
We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitation...
متن کاملWater relations in tree physiology: where to from here?
We look back over 50 years of research into the water relations of trees, with the objective of assessing the maturity of the topic in terms of the idea of a paradigm, put forward by Kuhn in 1962. Our brief review indicates that the physical processes underlying the calculation of transpiration are well understood and accepted, and knowledge of those processes can be applied if information abou...
متن کاملRole of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions.
The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemic...
متن کاملRegulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 58 8 شماره
صفحات -
تاریخ انتشار 2007